This table shows the frequency compared to the pitch on guitar (and other instruments), based on the standard tuning in our modern western music system with A4=440 Hz
Let’s do some math exercises first 🙂 !
In the equally floating tuning, the tone distance between adjacent tones is the same for all tones. Therefore, this ratio is equal to the twelfth square root of power of 2: POWER(2;1/12) = 1.05946309.
This means if we take A5 with a frequency pitch of 880 Hz, the semitone above A# is approximately 932,3 Hz (= 1,05946309 Ă— 880).
Example with the formula in Microsoft Excel
A#4 is 1 semitone higher than A4
A#4 = 440*POWER(POWER(2;1/12);1) = 466.1 Hz
B4 is 2 semitones higher than A4
B4 = 440*POWER(POWER(2;1/12);2) = 493.8 Hz
A5 is 12 semitones higher than A4
B4 = 440*POWER(POWER(2;1/12);12) = 880 Hz
note | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
C | 16,35 | 32,7 | 65,4 | 130,8 | 261,6 | 523,2 | 1046 | 2093 | 4186 | 8372 |
C# | 17,32 | 34,64 | 69,29 | 138,5 | 277,1 | 554,3 | 1108 | 2217 | 4434 | 8869 |
D | 18,35 | 36,7 | 73,41 | 146,8 | 293,6 | 587,3 | 1174 | 2349 | 4698 | 9397 |
D# | 19,44 | 38,89 | 77,78 | 155,5 | 311,1 | 622,2 | 1244 | 2489 | 4978 | 9956 |
E | 20,6 | 41,2 | 82,4 | 164,8 | 329,6 | 659,2 | 1318 | 2637 | 5274 | 10548 |
F | 21,82 | 43,65 | 87,3 | 174,6 | 349,2 | 698,4 | 1396 | 2793 | 5587 | 11175 |
F# | 23,12 | 46,24 | 92,49 | 184,9 | 369,9 | 739,9 | 1479 | 2959 | 5919 | 11839 |
G | 24,49 | 48,99 | 97,99 | 195,9 | 391,9 | 783,9 | 1567 | 3135 | 6271 | 12543 |
G# | 25,95 | 51,91 | 103,8 | 207,6 | 415,3 | 830,6 | 1661 | 3322 | 6644 | 13289 |
A | 27,5 | 55 | 110 | 220 | 440 | 880 | 1760 | 3520 | 7040 | 14080 |
A# | 29,13 | 58,27 | 116,5 | 233 | 466,1 | 932,3 | 1864 | 3729 | 7458 | 14917 |
B | 30,86 | 61,73 | 123,4 | 246,9 | 493,8 | 987,7 | 1975 | 3951 | 7902 | 15804 |
NOTES ON THE GUITAR FRETBOARD (WITH SHARPS # AND FLATS b)
Note : a C# and Db is in our Western music exact the same note (enharmonic). BUT, in music theory a C# is not the same as a Db!
